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Highlights
Mito-nuclear communication plays an
integral role in cellular homeostasis and
aging.

Mitochondrial metabolites are substrates
or mediators of epigenetic modifications.

Mitochondrial-to-nuclear stress sig-
nals modulate lifespan via epigenetic
regulations.
Age-associated changes in mitochondria are closely involved in aging. Apart
from the established roles in bioenergetics and biosynthesis, mitochondria are
signaling organelles that communicate their fitness to the nucleus, triggering
transcriptional programs to adapt homeostasis stress that is essential for organ-
ismal health and aging. Emerging studies revealed that mitochondrial-to-nuclear
(mito-nuclear) communication via altered levels of mitochondrial metabolites or
stress signals causes various epigenetic changes, facilitating efforts to maintain
homeostasis and affect aging. Here, we summarize recent studies on the mech-
anisms by which mito-nuclear communication modulates epigenomes and their
effects on regulating the aging process. Insights into understanding how mito-
chondrial metabolites serve as prolongevity signals and how aging affects this
communication will help us develop interventions to promote longevity and
health.
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The emerging role of mito-nuclear communication in the epigenome and aging
Mitochondria are the central core of energy metabolism within the cell, producing adenosine
triphosphate (ATP) (see Glossary) through the tricarboxylic acid cycle (TCA cycle) and
oxidative phosphorylation (OXPHOS). The mitochondrial proteome is mostly encoded by
the nucleus, with only 13 subunits of the electron transport chain (ETC) encoded by the mito-
chondrial DNA (mtDNA). Thus, constant mito-nuclear communication is required to coordinate
the expression, translation, and assembly of mitochondrial OXPHOS complexes encoded by
the mitochondrial and nuclear genomes to ensure optimal mitochondrial function [1]. During
aging, a decline in mitochondria function is associated with decreased OXPHOS activity, altered
levels of mitochondrial TCA cycle enzymes, accumulation of mtDNA mutations, increased
reactive oxygen species (ROS) production, and dysregulated mitochondrial proteostasis [2].
As a result, mitochondrial dysfunction may disrupt communication between mitochondria and
the nucleus, resulting in changes in gene expression associated with aging.

Primarily, mitochondrial function is mediated by the nuclear-encoded genes through anterograde
(nuclear-to-mitochondrial) signals, which promote mitochondrial biogenesis or increase mito-
chondrial activity to meet cellular needs. This regulation mainly depends on nuclear-encoded
transcription factors, such as PCG1α, NRF1, and other coregulators, to induce the expression
of mtDNA-encoded genes [3]. In contrast, retrograde signaling is transmitted from mitochon-
dria to the nucleus in response to perturbations within mitochondrial, such as the proteostasis
stress, energy deficits, and increased ROS production, which triggers transcription reprogram-
ming for metabolic adaptions [4–6] (Figure 1). While there are several major regulators involved
in mito-nuclear communication under stress conditions, only SIRT1, AMPK, and ATFS-1 have
been studied in great detail [3]. Emerging evidence showed that mitochondrial metabolites and
other stress signals can serve as signaling molecules to mediate epigenetic modifications,
which in turn facilitate the expression of metabolic genes essential for cellular homeostasis
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Figure 1. Mito-nuclear communication and aging. The anterograde (nuclear-to-mitochondrial) signals mediate the
expression of mtDNA-encoded genes to promote mitochondrial function. The retrograde signals (mitochondrial-to-
nuclear) allow mitochondria to communicate their fitness status to the nucleus in response to various stress conditions,
such as proteostasis stress, energy deficits, and increased ROS production, to regulate the expression of nuclear-
encoded genes for metabolic adaptions. In addition to transcriptional factors (TFs), mitochondrial metabolites and stress
signals could serve as secondary messengers to communicate with multiple chromatin modifiers that affect gene
expression for stress adaptations. Therefore, mitochondrial–nuclear signaling plays a crucial role in cellular homeostasis,
and disruption of the interplay between mitochondria and the nucleus contributes to aging and age-related disease.
Abbreviations: mtDNA, mitochondrial DNA; NAD+, nicotinamide adenine dinucleotide; NADH, NAD+ hydrogen; TCA,
tricarboxylic acid.
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Glossary
Adenosine triphosphate (ATP): a
molecule that carries energy within cells.
ATP consists of adenine, ribose, and
three groups of phosphoric acid, which
release energy during hydrolysis.
Electron transport chain (ETC): a
series of protein complexes that transfer
electrons from electron donors to
electron acceptors via redox reactions
and couple this electron transfer with the
transfer of protons across a membrane.
Mitochondrial unfolded protein
response (UPRmt): a protective
transcriptional response used to
promote organelle-specific proteostasis
during mitochondrial dysfunction.
Mitokine: a molecule (secreted protein,
peptides, or others) produced and
secreted from cells experiencing
mitochondrial stress, eliciting an
organismal mitochondrial stress
response in distal tissues that have not
been directly affected by the stress
stimulus.
One-carbon metabolism: comprises
a series of interlinking metabolic
pathways that include the methionine
and folate cycles that are central to
cellular function, providing 1C units
(methyl groups) for the synthesis of DNA,
polyamines, amino acids, creatine, and
phospholipids.
Oxidative phosphorylation
(OXPHOS): a metabolic pathway in
which cells use enzymes to release the
chemical energy stored within the
nutrients through oxidation in order to
produce ATP.
Reactive oxygen species (ROS):
by-products of cellular metabolism,
primarily in the mitochondria;
oxygen-containing radicals that are
capable of independent existence with
one ormore unpaired electrons, which is
essential for cell physiology and
participates in many pathological
processes.
Tricarboxylic acid cycle (TCAcycle):
a cyclic series of enzymatic reactions
occurring in the mitochondrial matrix,
through which organisms produce
energy.
and aging regulation [7–9]. Notably, aging is accompanied by extensive epigenetic alterations
and metabolic changes, which are more complex than a simple constant decline [10,11]. Thus,
communication between mitochondria and the nucleus provides cells with a dynamic regula-
tory network that allows them to respond to ever changing metabolic conditions or stresses
associated with aging [5,9]. In this review, we discuss examples of how mitochondrial metabolites
and stress signals modulate aging or longevity via epigenetic alterations and summarize the current
state of knowledge about how mitochondrial metabolites could serve as potential prolongevity
signals.

The interplay between mitochondrial metabolites and epigenetics modulates
lifespan
In addition to providing the energy for cells, mitochondria also serve as one of the metabolic hubs
responsible for the biosynthesis of macromolecules such as nucleotides, lipids, and proteins [7].
The intermediate metabolites derived frommitochondria are generally considered to be by-products
of cellular metabolism. It is increasingly recognized that metabolic signals originating from the
mitochondria can initiate epigenetic modifications in the nucleus through nonmetabolic mechanisms
[12] (Figure 2). The interplay between mitochondrial metabolites and epigenomes allows for
alterations in nuclear gene expression, which in turn regulates cellular homeostasis and modulates
the aging process [9] (Table 1). In this section, we discuss examples of mitochondrial metabolites,
including acetyl-coenzyme A (acetyl-CoA), alpha-ketoglutarate (α-KG), nicotinamide adenine
dinucleotide (NAD+), and methionine, as potential longevity regulators and how changes in their
abundance influence the epigenomes and the aging process in different organisms.
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Figure 2. Mitochondrial metabolites for epigenetic modifications. Metabolites generated by the tricarboxylic acid
(TCA) cycle, the electron transport chain (ETC), or one-carbon cycle within the mitochondria can act as substrates or
cofactors to control epigenetic modification, especially histone acetylation and methylation and DNA methylation. Acetyl-
CoA, which is produced from multiple sources within mitochondria, including pyruvate, amino acids, and fatty acids, is the
source of acetyl groups used by the histone acetyltransferases (HATs) to effect histone and protein acetylation. Variations
in acetyl-CoA are thus mitochondrial signals that can modulate broad gene expression programs. Alpha-ketoglutarate
(α-KG) produced in the TCA cycle serves as an essential cofactor for the chromatin-modifying Jumonji C (JmjC) domain-
containing lysine demethylases (JMJDs) and ten-eleven translocation (TETs) DNA demethylases, while fumarate, succinate
and 2-hydroxyglutarate (2-HG) inhibit both JMJDs and TETs. Nicotinamide adenine dinucleotide (NAD+) and flavin adenine
dinucleotide (FAD), which link the TCA cycle to the ETC via oxidative phosphorylation (OXPHOS), also influence the
epigenome. The level and redox state of FAD, an essential cofactor of Lys-specific demethylases (LSD), a class of histone
demethylases, is regulated by mitochondria. NAD+ is a cofactor for the protein deacetylases sirtuins (SIRTs) that regulate
the level of histone acetylation. In addition, S-adenosyl-L-methionine (SAM), which is generated in the cytosol and sustained
by the one-carbon metabolism in mitochondria, provides the source of methyl groups for histone and DNA methyltransfer-
ases (HMTs and DNMTs). ‘Off’ denotes transcriptional inhibition; ‘on’ denotes transcriptional activation.
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Acetyl-CoA
The TCA cycle, also known as the citric acid cycle or the Krebs cycle, releases stored energy
through the oxidation of acetyl-CoA derived from carbohydrates, fatty acids, and proteins.
Acetyl-CoA enters the TCA cycle to generate citrate and oxaloacetate within mitochondria [12].
As the cycle runs, the intermediates produced from the TCA cycle can be transported into the
Trends in Biochemical Sciences, August 2022, Vol. 47, No. 8 647
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Table 1. Mitochondrial metabolites that are implicated in longevity in various organisms

Metabolites Action Pathways affected Epigenetic
modifications

Lifespan Organism Refs

TCA cycle Acetyl-CoA Deletion of the
mitochondrial
CoA-transferase
ACH1

Hyperactivation of
Acs2p/ACSS2

H2A/B, H3
acetylation

Decreased
chronological
lifespan
(CLS))

Saccharomyces
cerevisiae

[21]

ETC
impairment-induced
decrease in
acetyl-CoA levels

UPRmt activation H3Ac Increased C. elegans [91]

Inhibition of ACLY
activity to reduce
acetyl-CoA levels

Unknown H3Ac, H4Ac Increased Drosophila
melanogaster

[20]

Brain-specific
knockdown of
ACSS2

Activation of autophagy Unknown Increased D. melanogaster [21]

Attenuation of
hippocampal ACSS2
expression

Reduction in neuronal plasticity H3K9ac,
H3K27ac,
H4K12ac

Cognitive
impairment

Mus musculus [15]

Citrate ETC
impairment-induced
decrease in citrate
levels

UPRmt activation H3Ac Increased C. elegans [91]

Lower
temperature-induced
decrease in
citrate/isocitrate ratio

Unknown H3Ac, H4Ac Increased D. melanogaster [20]

α-KG ETC impairment of
mit mutants have
increased α-KG levels

Inhibition of α-ketoacid
dehydrogenases

Unknown Increased C. elegans [32]

α-KG
supplementation

ATP synthase and TOR
inhibition

Unknown Increased C. elegans [29]

α-KG
supplementation

Activation of AMPK and
inhibition of mTOR

Unknown Increased D. melanogaster [30]

α-KG
supplementation

Decreased levels of
inflammatory cytokines

Unknown Increased M. musculus [31]

Succinate Mutation of succinate
dehydrogenase
complex (SDH) to
increase succinate
levels

Inhibition of multiple
α-KG-dependent dioxygenases

Genome-wide
histone and
DNA
methylation

Contribute to
tumorigenesis

M. musculus [97]

Fumarate Fumarate
supplementation

daf-16/FOXO and sir-2.1/Sirt1
requirement

Unknown Increased C. elegans [98]

Mutation of fumarate
hydratase (FH) to
increase fumarate
levels

Inhibition of multiple
α-KG-dependent dioxygenases

Genome-wide
histone and
DNA
methylation

Contribute to
tumorigenesis

M. musculus [97]

OXPHOS NAD+ NR supplementation
to increase NAD+

levels

Sir2 activation Unknown Increased
replicative
lifespan (RLS)

S. cerevisiae [39]

NR supplementation
to increase NAD+

levels

SIR-2.1 and UPRmt activation;
increased mitochondria content
and ATP levels; improved
metabolism

Unknown Increased C. elegans [54]

Boost de novo NAD+

synthesis
SIR-2.1 activation, UPRmt

activation
Unknown Increased C. elegans [99]
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Table 1. (continued)

Metabolites Action Pathways affected Epigenetic
modifications

Lifespan Organism Refs

NR supplementation to
increase NAD+ levels

SIRT1, SIRT2 activation; UPRmt

activation
BubR1
deacetylation

Increased M. musculus [40,100]

Boost de novo NAD+

synthesis
SIRT1 activation, UPRmt

activation
Lowered
acetylation
levels of
FOXO1

Protect the
liver and
kidneys

M. musculus [99]

Regenerating
mitochondrial NAD+

from bolstering MC1
activity

Prevent neural inflammation Unknown Increased M. musculus [52]

ROS Menadione and
rapamycin
supplementation to
increase mtROS
levels

Inactivation of a histone H3K36
demethylase Rph1p

H3K36me3 Increased
CLS

S. cerevisiae [82]

Exposure to ROS
naturally during early
development

Inactivation of the SET1/MLL
histone methyltransferases

H3K4me3 Increased C. elegans [83]

Methionine
metabolism

Methionine Methionine restriction Retrograde response activation,
increased stress tolerance,
autophagy-dependent

Unknown Increased
CLS

S. cerevisiae [64]

Metformin
supplementation to
inhibit microbial folate
and methionine
metabolism

Decreased in methionine levels Unknown Increased C. elegans [101]

Methionine restriction
with reduced levels of
amino acids

TOR signaling involvement Unknown Increased D. melanogaster [102]

Methionine restriction Decreased levels of glucose,
T4, IGF-I, and insulin; increased
levels of hepatocyte MIF;
improved stress resistance

Unknown Increased M. musculus [63]

SAM Deletion of
methionine
adenosyltransferase
sam1

Unknown Unknown Increased
RLS

S. cerevisiae [103]

Knock-down of
methionine
adenosyltransferase
sams-1

Mimicking dietary restriction Unknown Increased C. elegans [65]

Knock-down of
methionine
adenosyltransferase
Sams

Increased in methionine levels Unknown Decreased D. melanogaster [104]

Overexpression of
glycine
N-methyltransferase
gnmt to decrease
SAM levels

Reduced insulin/IGF-1 signaling Unknown Increased D. melanogaster [104]

Spermidine Spermidine
supplementation

Inhibition of histone
acetyltransferases activity,
suppression of oxidative stress,
activation of autophagy

H3Ac Increased S. cerevisiae,
C. elegans,
D. melanogaster

[69]
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cytosol for biosynthetic purposes. For example, citrate can exit the mitochondria through the
mitochondrial citrate transporter SLC25A1 (tricarboxylate antiporter solute carrier family 25,
member 1) and be converted back to acetyl-CoA and oxaloacetate by ATP-citrate lyase
(ACLY) both in the cytosol and in the nucleus [13]. Alternatively, ACSS2, the cytosolic acyl-CoA
synthetase short-chain family member 2, utilizes acetate to generate acetyl-CoA under
nutrient-limited conditions [14,15]. The cytosolic acetyl-CoA can then be used to synthesize
fatty acids, steroids, and certain amino acids. In addition to its prominent role in metabolism
and biosynthesis, the signaling role of acetyl-CoA is related to its ability to provide acetyl groups
for protein acetylation, including histone acetylation, a process catalyzed by histone acetyltrans-
ferases (HATs) [16]. Acetylation neutralizes the positive charge on lysine residues, which leads to
an open chromatin structure, facilitating access for transcription factors and affecting gene
expression [17]. The abundance and distribution of acetyl-CoA in distinct subcellular compartments
changes in response to various mitochondrial perturbations or pathological conditions during aging
[9,16]. Thus, acetyl-CoA serves as a secondmessenger that relays signals frommitochondria to the
nucleus to regulate metabolic adaptations that may contribute to the aging process.

Although acetyl-CoA is a central metabolite for both catabolic reactions and anabolic metabolism,
very few studies have investigated how levels of acetyl-CoA change with age due to its unstable
nature. Many mitochondrial-related functions are found to be impaired during aging and in age-
related neurodegenerative diseases [18]. In line with this notion, a study reported that acetyl-
CoA levels are decreased in the aging mouse brain and administration of two compounds,
CMS121 or J147, restored the levels of acetyl-CoA in the brain; this increase was associated
with the acetylation of histone H3 at a site specific for memory enhancement [19]. Despite the
tendency of an overall decline in mitochondrial function associated with aging, studies in fruit
flies surprisingly found that levels of acetyl-CoA and citrate increase in midlife [20]. Knock-down
of ACLY reduces the level of acetyl-CoA, leading to metabolic changes and increased longevity
inDrosophila [20]. It seems that the effects of acetyl-CoA on lifespan regulation are not consistent
among different organisms; recent studies have indicated that compartmentalized acetyl-CoA
and its effects on gene expression in specific tissues are key to lifespan regulation.

In yeast, blocking the mitochondrial route to acetyl-CoA resulted in the cytosolic accumulation of
acetate, which hyperactivated acetyl-CoA synthesis (Acs2p) and triggered histone acetylation,
resulting in a shortened lifespan [21]. Pouikli and colleagues observed an unexpected age-
dependent change in the localization of the acetyl-lysine signal, shifting from nuclear to mitochon-
drial upon aging in mesenchymal stem cells (MSC) [22]. They found that acetyl-CoA was trapped
inside mitochondria of aged MSCs due to a decrease in the level of citrate carrier, leading to a
reduction in histone acetylation and age-dependent chromatin compaction. Restoration of
cytosolic acetyl-CoA levels, either by exogenous expression of the citrate carrier or via acetate
supplementation, remodels the chromatin landscape and rejuvenates the MSCs [22]. The results
of this study highlight the effect of mitochondrial-to-nuclear communication on stem cell aging.

Given that the histone acetylation landscape changes with age in different tissue across various
organisms [23], future studies focusing on the distribution and relative abundance of compart-
mentalized acetyl-CoA will shed new light on the connection between mitochondrial metabolites
and histonemarks that ultimately change gene expression, resulting in aging-related phenotypes.

α-KG
α-KG is an endogenous intermediary metabolite that is generated from isocitrate by isocitrate de-
hydrogenase (IDH1/2) via oxidative decarboxylation in the TCA cycle. α-KG is also an obligatory
cosubstrate for 2-oxoglutarate-dependent dioxygenases (2-OGDDs), a large group of conserved
650 Trends in Biochemical Sciences, August 2022, Vol. 47, No. 8
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enzymes that catalyze hydroxylation reactions on different substrates, including proteins, lipids,
nucleic acids, and intermediary metabolites [24]. In addition, α-KG has multiple functions in
physiology via epigenetic regulations, because α-KG is a required substrate of some
chromatin-modifying enzymes, including the chromatin-modifying Jumonji C (JmjC) domain-
containing lysine demethylases (JMJDs), which are the major histone demethylases, and ten-
eleven translocation (TETs) DNA demethylases involved in DNA demethylation [25]. It is important
to note that the activity of JMJDs and TETs is dependent on the intracellular ratio of α-KG to
succinate or other inhibitors, including fumarate or 2-hydroxyglutarate (2-HG) [26]. Thus, changes
in the level of mitochondrial metabolite α-KG are capable of driving nuclear gene expression by
affecting DNA and histone methylation profiles.

During the aging process, mitochondrial function is progressively impaired and metabolic flux
in mitochondria declines, which exacerbates α-KG deficiency [27]. It has been reported that
α-KG deficiency in progenitor stem cells increases with age. For example, the level of α-KG
is reduced in the follicle fluids of aged humans, and supplementation with α-KG preserves
ovarian function in mice [28]. Supplementation with α-KG has been shown to extend lifespan
in Caenorhabditis elegans, Drosophila, and mice [29–31]. Studies in C. elegans showed that
α-KG levels are significantly increased in long-lived mitochondrial mutants [32]. Interestingly,
adding α-KG or I-2-hydroxyglutaratI(R)-2HG, a derivative of α-KG, extends the lifespan of
C. elegans by inhibiting ATP synthase activity [29,33]. α-KG also extends lifespan in Drosophila
by activating AMPK signaling and inhibiting the mTOR pathway [30]. Furthermore,
supplementing α-KG in the form of a calcium salt (CaAKG) promoted a longer and healthier
life associated with decreased levels of inflammatory cytokines in old mice [31].

These studies suggest that α-KG may be an ideal candidate for prolonged longevity studies in
humans; however, the role of α-KG in the epigenetic modifications that occur during aging is
still unclear. A recent study sponsored by the company Ponce de Leon Health showed a
nearly 8-year reversal in the biological age of 42 individual humans taking Rejuvant, an α-
KG based formulation, for 4–10 months [34]. Their conclusion was mainly based on
the analysis of the DNA methylation clock, one of the well-established aging biomarkers.
However, α-KG supplementation leads to both demethylation and hypermethylation of
some CpG sites in the genome, suggesting that α-KG may have a broader effect on methylation-
based aging, such as metabolic functions [34]. It is also worth noting that overexpression of
JMJD-1.2/PHF8 and JMJD-3.1/JMJD3, the H3K27 demethylases that are potential substrates of
α-KG, induces the expression of mitochondrial genes and extends lifespan in C. elegans [35]. It
will be an interesting future research direction to examine the methylation landscape of chromatin
to see whether the epigenetic clock of aging is slowed down or reversed in animals with α-KG
supplementation.

NAD+

NAD+ and the reduced form, NAD+ hydrogen (NADH), are crucial metabolites that are tightly
connected with mitochondrial energy production. NAD+ is a coenzyme for redox reactions and
is essential for the central metabolic pathways: the TCA cycle, the ETC, glycolysis, and fatty
acid β-oxidation. Changes in the cellular NAD+/NADH ratio regulate the activity of three groups
of enzymes, including class III histone deacetylase (sirtuins), cADP-ribose synthases (CD38),
and poly ADP-ribose polymerases (PARPs), with subsequent effects on gene expression [36].
Studies from yeast, worms, and mice have shown that NAD+ and sirtuins are linked to aging
regulation. During aging, NAD+ levels were found to be reduced across tissues in mice [36].
Brain NAD+ levels also decline with age in humans [37]. The link between lifespan extension
and supplementation with different NAD+ precursors has been extensively explored in various
Trends in Biochemical Sciences, August 2022, Vol. 47, No. 8 651
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organisms [38–40]. A more comprehensive description of the role of NAD+ in metabolism and
aging has been reviewed elsewhere [41,42].

Sirtuins sense intracellular NAD+ concentrations and transduce a signal via protein deacetylation.
Sirtuins and their role in lifespan determination were originally reported in yeast [43]. It is worth
noting that there have been controversial discussions about the role of Sir2 in aging in both
worms and flies [44–46]. In particular, early successes in Sir2 overexpression-induced longevity
were attributed to off-target effects of the transgenes and secondary mutations [44]. Mammals
have seven sirtuins, with SIRT1 being the most similar to the yeast Sir2. Systematic overexpression
of Sirt1 inmice prevented an age-related decline inmetabolism but failed to extend lifespan [47,48].
PARP, another NAD+-dependent enzyme, plays an active role in DNA repair, inflammation, and cell
death and its effects on metabolism and aging as well as its competition with sirtuins are nicely
summarized in recent reviews [49,50].

As a central metabolic regulator, NAD+ helps sustain mitochondrial fitness and is essential for cel-
lular homeostasis. NAD+ can bolster mitochondrial function by enabling mitochondrial biogenesis
and mitophagy in premature aging disease models [51]. Regenerating mitochondrial NAD+ by
bolstering mitochondrial complex I (MC1) activity is sufficient to increase the lifespan of mice
with MC1 impairment in the brain [52]. Maintaining the NAD+ level also sustains mito-nuclear
communication during aging [53]. Genetic or pharmacological restoration of NAD+ level increases
lifespan in worms via activation of the mitochondrial unfolded protein response (UPRmt) by
SIR-2.1 [54]. A recent study also showed that mitochondrial NAD+ contributes to mitochondrial-
to-nuclear communication by controlling nuclear ADP-ribosylation under H2O2-induced oxidative
stress [55]. Thus, modulation of the NAD+ levels to boost mito-nuclear communication can be
viewed as a target to delay age-associated metabolic decline.

Methionine
Amino acids, traditionally viewed as the building blocks of proteins, can be catabolized into TCA
cycle intermediates within mitochondria for energy production and they also play significant roles
in signaling transduction [56]. From yeast to humans, the concentrations of free amino acids
change with age and are altered in long-lived organisms [57]. In this section, we use methionine
as an example to discuss the underlying mechanisms by which amino acids may influence the
aging process.

Apart from its role in translational initiation, methionine is involved in multiple metabolic pathways,
including the methionine cycle, the trans-sulfuration pathway, and polyamine biosynthesis [58].
Methionine is the major amino acid source of S-adenosyl-L-methionine (SAM), the primary
donor of the methyl group for methylation [59]. In the cytosol, the folate cycle is coupled to the
methionine cycle to generate SAM, which in turn is sustained by mitochondrial one-carbon
metabolism. Cellular SAM levels determine the extent of histone methylation, in particular,
H3K4me3 for the maintenance of defined cellular states [60]. Hence, mitochondrial metabolic
fluctuation-induced changes in SAM levels may exert influence on histone and DNAmethylations,
which are critical for maintaining cellular homeostasis and regulating lifespan [61].

Methionine restriction extends the lifespan in many species [62]. It has been demonstrated that
dietary restriction (DR) of methionine improves metabolic health and delays aging-related disease
in mice [63]. In yeast, methionine restriction induces longevity via a retrograde response to
change mitochondrial function [64]. In C. elegans, knocking down expression of sams-1, the
gene encoding methionine adenosyltransferase (an enzyme that catalyzes the biosynthesis of
SAM), promotes lifespan extension [65]. Several studies have suggested that methionine plays
652 Trends in Biochemical Sciences, August 2022, Vol. 47, No. 8
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a negative role in lifespan regulation [62,66]. However, long-lived flies contain higher levels of
methionine [67]. Additionally, the reduction in fecundity caused by DR can be reversed by methi-
onine supplementation, without compromising DR-induced longevity [68]. Studies in flies showed
that methionine metabolism is reprogrammed during aging, accompanied by increased levels of
S-adenosyl-homocysteine (SAH), which is converted from SAM. Suppression of dAhcyL1
(an SAH hydrolase) activity decreased the level of SAH and suppressed H3K4 trimethylation
(H3K4me3), thus extending health and lifespan [67]. These data highlight the beneficial role of
methionine in lifespan regulation, indicating that the flux in methionine metabolism could be
more critical than the absolute level of methionine.

An exogenous supply of spermidine, a natural polyamine derived from methionine, can extend
lifespan without adverse effects during life-long administration in eukaryotes ranging from yeast
to mammals [69,70]. Mechanistically, spermidine treatment triggers histone H3 deacetylation
by inhibiting HAT, which significantly upregulates autophagy-related transcripts and induces
autophagy [69,71]. Because endogenous spermidine levels are negatively correlated with age
and spermidine supplementation shows good safety in a recent clinical trial, a spermidine-rich
diet may be promising to promote longevity and healthy aging. Taken together, these studies
suggest that dietary interventions of amino acids could reshape mitochondrial-to-nuclear
communication to influence cellular homeostasis and aging via epigenetic regulation, independent
of their traditional roles in protein metabolism.

Mitochondrial-to-nuclear stress signals determine lifespan via epigenetic
regulation
The metabolic status of the cell not only changes during aging but is also susceptible to environ-
mental stimuli. Disturbances in mitochondria trigger stress signaling and communicate their func-
tional state to the nucleus for adaptations. Distinct pathways are activated when mitochondrial
function is compromised, such as loss of mtDNA, accumulation of mtDNA mutations, impaired
respiration, disrupted mitochondrial protein homeostasis, and ROS production [3]. This signaling
facilitates communication between mitochondria and the nucleus to alter gene expression, leading
to metabolic adaptations and longevity [5]. Emerging studies have begun to reveal that chromatin
modifications in response to mitochondrial perturbations facilitate mitochondrial-to-nuclear
communication, thus leaving an epigenetic memory that may affect the aging process [72]. In this
section, we discuss how mitochondrial stress signals modulate aging via epigenetic regulations.

Mitochondrial ROS (mtROS)
ROS are generated as a by-product of normal aerobic metabolism. For many decades, ROS
were considered only to be ‘toxic’ products that cause oxidative damage to biomacromolecules,
such as DNA, protein, and lipids, thus inducing the cellular oxidative stress response and
accelerating aging. Redox signaling mediates cellular homeostasis by modifying the activity of
transcription factors, metabolic enzymes, and epigenetic modifications [73]. However, the extent
to which the oxidative stress response is involved in the aging process as a cause, a consequence,
or a correlation, remains elusive.

The mitochondrion is a major source of ROS production, especially free radicals such as
superoxide. Aging correlates with a decline in mitochondrial enzyme activity and increased
ROS production. One study showed that stochastic bursts of superoxide production in mito-
chondria in day-3 adult C. elegans worms inversely correlates with lifespan, except for the
long-lived mitochondrial mutant worms [74]. However, in the extremely long-lived naked mole
rat, levels of ROS production are found to be similar to those in mice [75]. Once thought of merely
as the destroyer of cellular homeostasis that causes oxidative damage and accelerated aging,
Trends in Biochemical Sciences, August 2022, Vol. 47, No. 8 653
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multiple studies suggest that mtROS can serve as important signaling molecules involved in
aging, inflammation, and cancer regulation [76–78].

Studies in organisms from yeast to rodents have shown that mtROS signals can promote stress
resistance and lifespan extension by respiration inhibition, caloric restriction, reduced TORC1 sig-
naling, exposure to mild hypoxia, or temperature stress [79–81], but few studies have identified
the signal through which the factors transmit information to elicit a highly specific transcriptional
program. A hormetic mtROS signal extends yeast chronological lifespan by inactivating a JMJD
histone H3K36 demethylase, Rph1p, via two DNA damage response kinases, thus enhancing
binding of the silencing protein Sir3p and repressing subtelomeric transcription [82]. In
C. elegans, elevated ROS levels during development increase stress resistance later in life and
promote lifespan extension [83]. The early life ROS-mediated inactivation of the SET1/MLL his-
tone methyltransferases leads to a reduction in global H3K4me3 levels, which causes improved
redox homeostasis and, ultimately, increases longevity [83]. Therefore, it has become evident that
mitochondrial dysfunction or mtROS signaling may influence lifespan and that the timing and
levels of ROS generation are important factors.

The UPRmt

Mitochondrial function is monitored by a series of quality control pathways that sense mitochon-
drial dysfunction and respond to cellular metabolic demands. These stress responses are
initiated by signals produced within mitochondria and consequently induce a nuclear response
that is aimed to protect mitochondrial function [18]. Although severe mitochondrial stress is
detrimental, mild mitochondrial perturbation during development can have beneficial effects on
the lifespan of organisms through epigenetic regulations [72].

InC. elegans, mitochondrial stresses caused by RNAi against the ETC components during devel-
opment not only extend lifespan, but also elicit a transcriptional response known as the UPRmt,
which functions to resolve protein folding stress within mitochondria [84–86,115–117]. Intrigu-
ingly, activation of UPRmt is required for mitochondrial stress-induced longevity, and the ability
to activate the UPRmt dramatically declines as animals mature and age [87,88]. The master reg-
ulator of the UPRmt in C. elegans is the transcription factor ATFS-1, which has both a mitochon-
drial targeting sequence and a nuclear localization signal. When mitochondrial functions are
compromised, the import efficiency of ATFS-1 is decreased and, instead, ATFS-1 accumulates
in the nucleus to induce UPRmt [118]. ATFS-1 itself represents a type of mitochondrial-to-
nuclear communication for mitochondrial stress regulation. It is notable that severe mitochondrial
stresses, such as inhibition of the mitochondrial import machinery, strongly induce the UPRmt in
C. elegans; however, these worms were short-lived [89]. In addition, animals with a gain-of-
function allele of ATFS-1, the transcription factor for UPRmt, are not long-lived, indicating that con-
stitutive activation of the UPRmt is not sufficient to induce lifespan extension [89].

Notably, there is only a small window of time during development in which the beneficial effects
can occur, suggesting that mitochondrial dysfunction in early development can alter the epige-
nome landscape that adjusts organismal physiology to ultimately impact lifespan [86,88]. In-
deed, mitochondrial stress causes widespread chromatin reorganization to induce the
UPRmt via multiple epigenetic factors. During mitochondrial stress, ATF7IP/LIN-65 accumu-
lates in the nucleus, which requires the histone H3K9 methyltransferase MET-2/SETDB1 and
the homeobox transcription factor DVE-1/SATB1 to promote chromatin compaction [90]. In
line with this study, the JMJD histone demethylases JMJD-1.2/PHF8 and JMJD-3.1/JMJD3
are also required for UPRmt activation and lifespan extension in response to mitochondrial
stress [35]. However, mitochondrial stress-induced epigenetic changes are independent of
654 Trends in Biochemical Sciences, August 2022, Vol. 47, No. 8
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ATFS-1, indicating that other stress signals derived frommitochondria are required for chroma-
tin reorganization.

Zhu et al. found that a decrease in acetyl-CoA levels resulting from mitochondrial stress functions
as a signal for nucleosome remodeling and histone deacetylase (NuRD) complex-mediated chro-
matin reorganization and lifespan extension [91]. The histone deacetylase HDA-1, a component of
the NuRD complex, coordinates with the chromatin organizer DVE-1 to regulate transcription of the
UPRmt in C. elegans. Its mammalian homologs HDAC1/2 also play a conserved role in modulating
mitochondrial homeostasis [92]. The loss of NuRD components was sufficient to cause a progression
of aging-related phenotypes [93]. Notably, mitochondrial stress can promote nuclear accumulation of
NuRD subunits and overexpression of the NuRD complex components is sufficient to induce lifespan
extension inC. elegans [91,92]. In addition, an acetyltransferase CBP-1/p300 positively regulates the
UPRmt and is required for mitochondrial stress-induced longevity [94].

It is interesting to speculate that NuRD complex-mediated histone deacetylation may coordinate
with LIN-65/MET-2-mediated histone methylation to promote chromatin compaction, whereas
JMJD histone demethylases and CBP-1 canmaintain an open chromatin state at specific regions
to promote induction of the UPRmt (Figure 3). Whether alterations in the levels of other
TrendsTrends inin BiochemicalBiochemical Sciences Sciences

Figure 3. Mitochondrial-to-nuclear stress signaling modulates lifespan via epigenetic regulations. Mitochondrial stress
leads to chromatin reorganization and global gene silencing. With the onset of mitochondrial stress, the decreased acetyl-CoA
content derived from citrate induces nuclear accumulation of the nucleosome remodeling and histone deacetylase (NuRD
complex and the homeobox transcription factor (TF) DVE-1 to decrease histone acetylation and reorganize chromatin structure
The histone H3K9 methyl-transferase MET-2 and its cofactor LIN-65 also promote chromatin compaction and global gene
silencing during mitochondrial stress. Concomitantly, two histone lysine demethylases that contain a Jumonji C domain (JMJDs)
JMJD-1.2 and JMJD-3.1, and the acetyltransferase CBP-1 promote a relatively open chromatin state by removing methy
groups from H3K27me3 and adding acetyl groups to histones at the loci of the mitochondrial unfolded protein response (UPRmt

genes to maintain a transcriptionally competent state for the TF ATFS-1 to activate transcription of UPRmt genes. Mitochondria
dysfunction can generate reactive oxygen species (ROS), which act as signaling molecules to modulate epigenetic marks such
as Rph1p-mediated H3K36 demethylation, SET1 mediated H3K4me3 methylation. The ROS-mediated epigenetic changes in
turn alter the expression of genes that regulate mitochondrial metabolism, to eventually regulate aging and longevity
Abbreviations: ETC, electron transport chain; TCA, tricarboxylic acid.
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Outstanding questions
How is the production of mitochondrial
metabolites regulated both spatially
and temporally to elicit epigenetic
changes in response to mitochondrial
dysfunction?

What are the specific epigenetic
factors involved in mitochondrial-to-
nuclear communications and how do
they cooperate with transcription fac-
tors in response to various external
and internal stimuli?

Do various mitochondrial metabolites act
alone or in concert on the epigenome to
regulate the aging process?

Are some organs or tissues more
at risk than others in maintaining
mitochondrial-to-nuclear communica-
tion during aging?

Can the intervention of mitochondrial-
to-nuclear communications mimic the
beneficial epigenetic changes to delay
aging or alleviate age-onset diseases?
mitochondrial metabolites caused by mitochondrial perturbations can reshape epigenomes for
lifespan regulation remains to be addressed in future studies. The UPRmt was initially character-
ized in mammalian cells and the molecular mechanism of UPRmt regulation has been extensively
characterized in C. elegans. Whether the UPRmt induction requires epigenetic regulation or
whether mitochondrial dysfunction during development promotes longevity in mammals remains
to be explored. The timing and extent of the stress response, or the other signaling pathways in
addition to the UPRmt following mitochondrial perturbations, are all essential factors in determin-
ing lifespan.

Mitochondrial stress not only signals to the nucleus within the cell, but can also be sensed
between tissues and organs to coordinate the whole body to copewith locally sensedmitochondrial
dysfunction, which is essential for organismal homeostasis and aging [18]. It will be crucial in future
studies to explore the networks underlying systemic coordination of mitochondrial-to-nucleus stress
signals for lifespan regulation (Box 1).

Concluding remarks
The studies reviewed here highlight the essential role played bymitochondrial-to-nuclear commu-
nication signals in the regulation of the aging process. External and internal metabolic cues can
affect mitochondrial function, thus altering gene expression through epigenetic modifications
[12]. Manipulation and restoration of some key mitochondrial metabolites to boost cellular
metabolism and reverse age-associated epigenetic changes could be developed as therapeutic
strategies to delay aging.

There is emerging evidence to indicate that mitochondrial metabolism is tightly regulated both
spatially and temporally to elicit responses to nutrient availability and signaling cues [16]. Tissue-
specific or even mitochondria-specific metabolome analysis will lead us to further understanding
Box 1. Systemic control of mitochondrial-to-nuclear stress signaling for regulating lifespan

Mitochondrial stress signal from one tissue can induce a stress response in distal tissues via cell nonautonomous
regulation, allowing organisms to better cope with localized mitochondrial stress during aging [88,119–121]. Muscle-spe-
cific knockout of mitochondrial cytochrome c oxidase (COX) causes a variety of disease phenotypes and shortens lifespan
in mice [105]. T cells with a deficiency in mitochondrial transcription factor A (TFAM) show a chronic, induced inflammation
accompanied by age, leading to multimorbidity and premature senescence [106]. At present, it is not known how the mi-
tochondrial function in different tissues is coordinated with age.

In C. elegans, ETC impairment exclusively in neurons can activate the UPRmt in a cell nonautonomous fashion in the
intestine and increase lifespan [88]. It has been hypothesized that the secreted ‘mitokine’ signal from tissues with mito-
chondrial dysfunction can function at a distance to elicit a mitochondrial stress response in distal tissues. A further study
identified the retromer-dependent Wnt signaling function as the ‘mitokine’ signal that mediates the cell nonautonomous
induction of the UPRmt. Overexpression of the Wnt ligand EGL-20 specifically in the nervous system is sufficient to induce
the UPRmt in the intestine and promote lifespan extension in worms [107]. Surprisingly, neuronal mitochondrial stress can
be sensed and reacted to by the mitochondria in the germline to promote the maternal inheritance of elevated mtDNA
levels across multiple generations in a Wnt signaling-dependent manner. The transgenerational UPRmt activation and
elevatedmtDNA levels enable the descendent worms to live longer and also confers increased stress tolerance, albeit with
the trade-offs of delayed development and reduced fecundity [107,108].

One study using wild strains of C. elegans showed that natural variation in neuropeptide-mediated glia–neuron signaling
modulates the rate of aging via SIR-2.1-mediated activation of the UPRmt [109]. Disrupted mitochondrial function in muscles
activates the UPRmt and elicits an ImpL2 (insulin/IGF binding protein) signal to decrease global insulin/insulin-like growth
factor signaling (IIS) and prolong lifespan in flies [110]. Systemic coordination of the mitochondrial stress response is also
conserved in mammals. In mice, mitochondrial dysfunction in the hypothalamic POMC neurons leads to high-turnover
metabolism and obesity and remodels adipose metabolism [111,112]. Patients with mitochondrial disorders who suffer from
muscle weakness have excessive levels of fibroblast growth factor 21 (FGF-21) and growth differentiation factor 15 (GDF-15)
in their serum [113,114]. It will also be important to understand which tissues/organs are responsible for coordinating the
organismal prolongevity signals in higher organisms.
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of metabolite-driven epigenetic regulations. How signal transduction in cell nonautonomous mito-
chondrial communication is orchestrated has not been explicitly addressed. The interplay between
tissues and organs to coordinate the metabolic status of the body can also be used to develop
therapeutic treatments for diseases.

Diet is known to have a significant influence on metabolism and lifespan. A well-established
dietary intervention to promote longevity is DR. There is evidence to suggest that DR-induced
lifespan extension could be mediated at the epigenetic level through alterations in the levels of
metabolites to influence DNA methylation [95]. However, the DR-induced benefits cannot be
effectively induced in late-life mice [96]. Mitochondrial stress during development causes wide-
spread changes in chromatin structure to promote UPRmt, perpetuating an early response that
results in lifespan extension. The evidence indicates that, to some extent, epigenetic modifica-
tions are reversible and that chromatin is plastic. Thus, a suitable intervention involving nutrients
in the diet could be a safe and effective way to modulate mitochondrial function and delay aging.

Despite these advances, our understanding of the interplay between mitochondrial-to-nuclear
stress signaling remains limited (see Outstanding questions). It will be essential to determine how
mitochondrial metabolites affect site-specific epigenetic modifications in a tissue-specific manner.
Future studies will help us develop interventions on mitochondrial-to-nuclear communications to
mimic the beneficial epigenetic changes for delaying aging or alleviating age-onset diseases.
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